pub struct Point<T = f64>(pub Coord<T>)
where
T: CoordNum;
Expand description
A single point in 2D space.
Points can be created using the Point::new
constructor,
the [point!
] macro, or from a Coord
, two-element
tuples, or arrays – see the From
impl section for a
complete list.
Semantics
The interior of the point is itself (a singleton set),
and its boundary is empty. A point is valid if and
only if the Coord
is valid.
Examples
use geo_types::{coord, Point};
let p1: Point = (0., 1.).into();
let c = coord! { x: 10., y: 20. };
let p2: Point = c.into();
Tuple Fields§
§0: Coord<T>
Implementations§
§impl<T> Point<T>where
T: CoordNum,
impl<T> Point<T>where
T: CoordNum,
pub fn new(x: T, y: T) -> Point<T>
pub fn new(x: T, y: T) -> Point<T>
Creates a new point.
Examples
use geo_types::Point;
let p = Point::new(1.234, 2.345);
assert_eq!(p.x(), 1.234);
assert_eq!(p.y(), 2.345);
pub fn x(self) -> T
pub fn x(self) -> T
Returns the x/horizontal component of the point.
Examples
use geo_types::Point;
let p = Point::new(1.234, 2.345);
assert_eq!(p.x(), 1.234);
pub fn set_x(&mut self, x: T) -> &mut Point<T>
pub fn set_x(&mut self, x: T) -> &mut Point<T>
Sets the x/horizontal component of the point.
Examples
use geo_types::Point;
let mut p = Point::new(1.234, 2.345);
p.set_x(9.876);
assert_eq!(p.x(), 9.876);
pub fn x_mut(&mut self) -> &mut T
pub fn x_mut(&mut self) -> &mut T
Returns a mutable reference to the x/horizontal component of the point
Examples
use approx::assert_relative_eq;
use geo_types::Point;
let mut p = Point::new(1.234, 2.345);
let mut p_x = p.x_mut();
*p_x += 1.0;
assert_relative_eq!(p.x(), 2.234);
pub fn y(self) -> T
pub fn y(self) -> T
Returns the y/vertical component of the point.
Examples
use geo_types::Point;
let p = Point::new(1.234, 2.345);
assert_eq!(p.y(), 2.345);
pub fn set_y(&mut self, y: T) -> &mut Point<T>
pub fn set_y(&mut self, y: T) -> &mut Point<T>
Sets the y/vertical component of the point.
Examples
use geo_types::Point;
let mut p = Point::new(1.234, 2.345);
p.set_y(9.876);
assert_eq!(p.y(), 9.876);
pub fn y_mut(&mut self) -> &mut T
pub fn y_mut(&mut self) -> &mut T
Returns a mutable reference to the x/horizontal component of the point
Examples
use approx::assert_relative_eq;
use geo_types::Point;
let mut p = Point::new(1.234, 2.345);
let mut p_y = p.y_mut();
*p_y += 1.0;
assert_relative_eq!(p.y(), 3.345);
pub fn x_y(self) -> (T, T)
pub fn x_y(self) -> (T, T)
Returns a tuple that contains the x/horizontal & y/vertical component of the point.
Examples
use geo_types::Point;
let mut p = Point::new(1.234, 2.345);
let (x, y) = p.x_y();
assert_eq!(y, 2.345);
assert_eq!(x, 1.234);
pub fn lng(self) -> T
👎Deprecated: use Point::x
instead, it’s less ambiguous
pub fn lng(self) -> T
Point::x
instead, it’s less ambiguousReturns the longitude/horizontal component of the point.
Examples
use geo_types::Point;
let p = Point::new(1.234, 2.345);
assert_eq!(p.x(), 1.234);
pub fn set_lng(&mut self, lng: T) -> &mut Point<T>
👎Deprecated: use Point::set_x
instead, it’s less ambiguous
pub fn set_lng(&mut self, lng: T) -> &mut Point<T>
Point::set_x
instead, it’s less ambiguousSets the longitude/horizontal component of the point.
Examples
use geo_types::Point;
let mut p = Point::new(1.234, 2.345);
#[allow(deprecated)]
p.set_lng(9.876);
assert_eq!(p.x(), 9.876);
§impl<T> Point<T>where
T: CoordNum,
impl<T> Point<T>where
T: CoordNum,
pub fn dot(self, other: Point<T>) -> T
pub fn dot(self, other: Point<T>) -> T
Returns the dot product of the two points:
dot = x1 * x2 + y1 * y2
Examples
use geo_types::{point, Point};
let point = point! { x: 1.5, y: 0.5 };
let dot = point.dot(point! { x: 2.0, y: 4.5 });
assert_eq!(dot, 5.25);
pub fn cross_prod(self, point_b: Point<T>, point_c: Point<T>) -> T
pub fn cross_prod(self, point_b: Point<T>, point_c: Point<T>) -> T
Returns the cross product of 3 points. A positive value implies
self
→ point_b
→ point_c
is counter-clockwise, negative implies
clockwise.
Note on Robustness
This function is not robust against floating-point errors.
The geo
crate
offers robust predicates for standard numeric types using the
Kernel
trait, and these should be preferred if possible.
Examples
use geo_types::point;
let point_a = point! { x: 1., y: 2. };
let point_b = point! { x: 3., y: 5. };
let point_c = point! { x: 7., y: 12. };
let cross = point_a.cross_prod(point_b, point_c);
assert_eq!(cross, 2.0)
§impl<T> Point<T>where
T: CoordFloat,
impl<T> Point<T>where
T: CoordFloat,
pub fn to_degrees(self) -> Point<T>
pub fn to_degrees(self) -> Point<T>
Converts the (x,y) components of Point to degrees
Example
use geo_types::Point;
let p = Point::new(1.234, 2.345);
let (x, y): (f32, f32) = p.to_degrees().x_y();
assert_eq!(x.round(), 71.0);
assert_eq!(y.round(), 134.0);
pub fn to_radians(self) -> Point<T>
pub fn to_radians(self) -> Point<T>
Converts the (x,y) components of Point to radians
Example
use geo_types::Point;
let p = Point::new(180.0, 341.5);
let (x, y): (f32, f32) = p.to_radians().x_y();
assert_eq!(x.round(), 3.0);
assert_eq!(y.round(), 6.0);
Trait Implementations§
§impl<T> AbsDiffEq for Point<T>where
T: AbsDiffEq<Epsilon = T> + CoordNum,
<T as AbsDiffEq>::Epsilon: Copy,
impl<T> AbsDiffEq for Point<T>where
T: AbsDiffEq<Epsilon = T> + CoordNum,
<T as AbsDiffEq>::Epsilon: Copy,
§fn abs_diff_eq(
&self,
other: &Point<T>,
epsilon: <Point<T> as AbsDiffEq>::Epsilon
) -> bool
fn abs_diff_eq( &self, other: &Point<T>, epsilon: <Point<T> as AbsDiffEq>::Epsilon ) -> bool
Equality assertion with an absolute limit.
Examples
use geo_types::Point;
let a = Point::new(2.0, 3.0);
let b = Point::new(2.0, 3.0000001);
approx::assert_relative_eq!(a, b, epsilon=0.1)
§fn default_epsilon() -> <Point<T> as AbsDiffEq>::Epsilon
fn default_epsilon() -> <Point<T> as AbsDiffEq>::Epsilon
§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq
].§impl<T> AddAssign for Point<T>where
T: CoordNum,
impl<T> AddAssign for Point<T>where
T: CoordNum,
§fn add_assign(&mut self, rhs: Point<T>)
fn add_assign(&mut self, rhs: Point<T>)
Add a point to the given point and assign it to the original point.
Examples
use geo_types::Point;
let mut p = Point::new(1.25, 2.5);
p += Point::new(1.5, 2.5);
assert_eq!(p.x(), 2.75);
assert_eq!(p.y(), 5.0);
§impl<T> DivAssign<T> for Point<T>where
T: CoordNum,
impl<T> DivAssign<T> for Point<T>where
T: CoordNum,
§fn div_assign(&mut self, rhs: T)
fn div_assign(&mut self, rhs: T)
Scaler division of a point in place
Examples
use geo_types::Point;
let mut p = Point::new(2.0, 3.0);
p /= 2.0;
assert_eq!(p.x(), 1.0);
assert_eq!(p.y(), 1.5);
§impl<T> MulAssign<T> for Point<T>where
T: CoordNum,
impl<T> MulAssign<T> for Point<T>where
T: CoordNum,
§fn mul_assign(&mut self, rhs: T)
fn mul_assign(&mut self, rhs: T)
Scaler multiplication of a point in place
Examples
use geo_types::Point;
let mut p = Point::new(2.0, 3.0);
p *= 2.0;
assert_eq!(p.x(), 4.0);
assert_eq!(p.y(), 6.0);
§impl<T> Point for Point<T>where
T: Float + RTreeNum,
impl<T> Point for Point<T>where
T: Float + RTreeNum,
§const DIMENSIONS: usize = 2usize
const DIMENSIONS: usize = 2usize
§fn generate(
generator: impl FnMut(usize) -> <Point<T> as Point>::Scalar
) -> Point<T>
fn generate( generator: impl FnMut(usize) -> <Point<T> as Point>::Scalar ) -> Point<T>
§impl<T> RelativeEq for Point<T>where
T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
impl<T> RelativeEq for Point<T>where
T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
§fn relative_eq(
&self,
other: &Point<T>,
epsilon: <Point<T> as AbsDiffEq>::Epsilon,
max_relative: <Point<T> as AbsDiffEq>::Epsilon
) -> bool
fn relative_eq( &self, other: &Point<T>, epsilon: <Point<T> as AbsDiffEq>::Epsilon, max_relative: <Point<T> as AbsDiffEq>::Epsilon ) -> bool
Equality assertion within a relative limit.
Examples
use geo_types::Point;
let a = Point::new(2.0, 3.0);
let b = Point::new(2.0, 3.01);
approx::assert_relative_eq!(a, b, max_relative=0.1)
§fn default_max_relative() -> <Point<T> as AbsDiffEq>::Epsilon
fn default_max_relative() -> <Point<T> as AbsDiffEq>::Epsilon
§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
RelativeEq::relative_eq
].§impl<T> Sub for Point<T>where
T: CoordNum,
impl<T> Sub for Point<T>where
T: CoordNum,
§impl<T> SubAssign for Point<T>where
T: CoordNum,
impl<T> SubAssign for Point<T>where
T: CoordNum,
§fn sub_assign(&mut self, rhs: Point<T>)
fn sub_assign(&mut self, rhs: Point<T>)
Subtract a point from the given point and assign it to the original point.
Examples
use geo_types::Point;
let mut p = Point::new(1.25, 2.5);
p -= Point::new(1.5, 2.5);
assert_eq!(p.x(), -0.25);
assert_eq!(p.y(), 0.0);
§impl<T> TryFrom<Geometry<T>> for Point<T>where
T: CoordNum,
impl<T> TryFrom<Geometry<T>> for Point<T>where
T: CoordNum,
Convert a Geometry enum into its inner type.
Fails if the enum case does not match the type you are trying to convert it to.
impl<T> Copy for Point<T>where
T: Copy + CoordNum,
impl<T> Eq for Point<T>where
T: Eq + CoordNum,
impl<T> StructuralEq for Point<T>where
T: CoordNum,
impl<T> StructuralPartialEq for Point<T>where
T: CoordNum,
Auto Trait Implementations§
impl<T> RefUnwindSafe for Point<T>where
T: RefUnwindSafe,
impl<T> Send for Point<T>where
T: Send,
impl<T> Sync for Point<T>where
T: Sync,
impl<T> Unpin for Point<T>where
T: Unpin,
impl<T> UnwindSafe for Point<T>where
T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> CallHasher for T
impl<T> CallHasher for T
source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request
§impl<P> PointDistance for Pwhere
P: Point,
impl<P> PointDistance for Pwhere
P: Point,
§fn distance_2(&self, point: &P) -> <P as Point>::Scalar
fn distance_2(&self, point: &P) -> <P as Point>::Scalar
§fn contains_point(
&self,
point: &<<P as RTreeObject>::Envelope as Envelope>::Point
) -> bool
fn contains_point( &self, point: &<<P as RTreeObject>::Envelope as Envelope>::Point ) -> bool
true
if a point is contained within this object. Read more§fn distance_2_if_less_or_equal(
&self,
point: &<<P as RTreeObject>::Envelope as Envelope>::Point,
max_distance_2: <<<P as RTreeObject>::Envelope as Envelope>::Point as Point>::Scalar
) -> Option<<P as Point>::Scalar>
fn distance_2_if_less_or_equal( &self, point: &<<P as RTreeObject>::Envelope as Envelope>::Point, max_distance_2: <<<P as RTreeObject>::Envelope as Envelope>::Point as Point>::Scalar ) -> Option<<P as Point>::Scalar>
None
if the distance
is larger than a given maximum value. Read more