pub struct Polygon<T = f64>where
T: CoordNum,{ /* private fields */ }Expand description
A bounded two-dimensional area.
A Polygon’s outer boundary (exterior ring) is represented by a
LineString. It may contain zero or more holes (interior rings), also
represented by LineStrings.
A Polygon can be created with the Polygon::new constructor or the [polygon!][crate::polygon!] macro.
Semantics
The boundary of the polygon is the union of the boundaries of the exterior and interiors. The interior is all the points inside the polygon (not on the boundary).
The Polygon structure guarantees that all exterior and interior rings will
be closed, such that the first and last Coord of each ring has
the same value.
Validity
-
The exterior and interior rings must be valid
LinearRings (seeLineString). -
No two rings in the boundary may cross, and may intersect at a
Pointonly as a tangent. In other words, the rings must be distinct, and for every pair of common points in two of the rings, there must be a neighborhood (a topological open set) around one that does not contain the other point. -
The closure of the interior of the
Polygonmust equal thePolygonitself. For instance, the exterior may not contain a spike. -
The interior of the polygon must be a connected point-set. That is, any two distinct points in the interior must admit a curve between these two that lies in the interior.
Refer to section 6.1.11.1 of the OGC-SFA for a formal
definition of validity. Besides the closed LineString
guarantee, the Polygon structure does not enforce
validity at this time. For example, it is possible to
construct a Polygon that has:
- fewer than 3 coordinates per
LineStringring - interior rings that intersect other interior rings
- interior rings that extend beyond the exterior ring
LineString closing operation
Some APIs on Polygon result in a closing operation on a LineString. The
operation is as follows:
If a LineString’s first and last Coord have different values, a
new Coord will be appended to the LineString with a value equal to
the first Coord.
Implementations§
§impl<T> Polygon<T>where
T: CoordNum,
impl<T> Polygon<T>where
T: CoordNum,
pub fn new(exterior: LineString<T>, interiors: Vec<LineString<T>>) -> Polygon<T>
pub fn new(exterior: LineString<T>, interiors: Vec<LineString<T>>) -> Polygon<T>
Create a new Polygon with the provided exterior LineString ring and
interior LineString rings.
Upon calling new, the exterior and interior LineString rings will
be closed.
Examples
Creating a Polygon with no interior rings:
use geo_types::{LineString, Polygon};
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);Creating a Polygon with an interior ring:
use geo_types::{LineString, Polygon};
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])],
);If the first and last Coords of the exterior or interior
LineStrings no longer match, those LineStrings will be closed:
use geo_types::{coord, LineString, Polygon};
let mut polygon = Polygon::new(LineString::from(vec![(0., 0.), (1., 1.), (1., 0.)]), vec![]);
assert_eq!(
polygon.exterior(),
&LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.),])
);pub fn into_inner(self) -> (LineString<T>, Vec<LineString<T>>)
pub fn into_inner(self) -> (LineString<T>, Vec<LineString<T>>)
Consume the Polygon, returning the exterior LineString ring and
a vector of the interior LineString rings.
Examples
use geo_types::{LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])],
);
let (exterior, interiors) = polygon.into_inner();
assert_eq!(
exterior,
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.),])
);
assert_eq!(
interiors,
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])]
);pub fn exterior(&self) -> &LineString<T>
pub fn exterior(&self) -> &LineString<T>
Return a reference to the exterior LineString ring.
Examples
use geo_types::{LineString, Polygon};
let exterior = LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]);
let polygon = Polygon::new(exterior.clone(), vec![]);
assert_eq!(polygon.exterior(), &exterior);pub fn exterior_mut<F>(&mut self, f: F)where
F: FnOnce(&mut LineString<T>),
pub fn exterior_mut<F>(&mut self, f: F)where
F: FnOnce(&mut LineString<T>),
Execute the provided closure f, which is provided with a mutable
reference to the exterior LineString ring.
After the closure executes, the exterior LineString will be closed.
Examples
use geo_types::{coord, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);
polygon.exterior_mut(|exterior| {
exterior.0[1] = coord! { x: 1., y: 2. };
});
assert_eq!(
polygon.exterior(),
&LineString::from(vec![(0., 0.), (1., 2.), (1., 0.), (0., 0.),])
);If the first and last Coords of the exterior LineString no
longer match, the LineString will be closed:
use geo_types::{coord, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);
polygon.exterior_mut(|exterior| {
exterior.0[0] = coord! { x: 0., y: 1. };
});
assert_eq!(
polygon.exterior(),
&LineString::from(vec![(0., 1.), (1., 1.), (1., 0.), (0., 0.), (0., 1.),])
);pub fn try_exterior_mut<F, E>(&mut self, f: F) -> Result<(), E>
pub fn try_exterior_mut<F, E>(&mut self, f: F) -> Result<(), E>
Fallible alternative to exterior_mut.
pub fn interiors(&self) -> &[LineString<T>]
pub fn interiors(&self) -> &[LineString<T>]
Return a slice of the interior LineString rings.
Examples
use geo_types::{coord, LineString, Polygon};
let interiors = vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])];
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
interiors.clone(),
);
assert_eq!(interiors, polygon.interiors());pub fn interiors_mut<F>(&mut self, f: F)where
F: FnOnce(&mut [LineString<T>]),
pub fn interiors_mut<F>(&mut self, f: F)where
F: FnOnce(&mut [LineString<T>]),
Execute the provided closure f, which is provided with a mutable
reference to the interior LineString rings.
After the closure executes, each of the interior LineStrings will be
closed.
Examples
use geo_types::{coord, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])],
);
polygon.interiors_mut(|interiors| {
interiors[0].0[1] = coord! { x: 0.8, y: 0.8 };
});
assert_eq!(
polygon.interiors(),
&[LineString::from(vec![
(0.1, 0.1),
(0.8, 0.8),
(0.9, 0.1),
(0.1, 0.1),
])]
);If the first and last Coords of any interior LineString no
longer match, those LineStrings will be closed:
use geo_types::{coord, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])],
);
polygon.interiors_mut(|interiors| {
interiors[0].0[0] = coord! { x: 0.1, y: 0.2 };
});
assert_eq!(
polygon.interiors(),
&[LineString::from(vec![
(0.1, 0.2),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
(0.1, 0.2),
])]
);pub fn try_interiors_mut<F, E>(&mut self, f: F) -> Result<(), E>
pub fn try_interiors_mut<F, E>(&mut self, f: F) -> Result<(), E>
Fallible alternative to interiors_mut.
pub fn interiors_push(&mut self, new_interior: impl Into<LineString<T>>)
pub fn interiors_push(&mut self, new_interior: impl Into<LineString<T>>)
Add an interior ring to the Polygon.
The new LineString interior ring will be closed:
Examples
use geo_types::{coord, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);
assert_eq!(polygon.interiors().len(), 0);
polygon.interiors_push(vec![(0.1, 0.1), (0.9, 0.9), (0.9, 0.1)]);
assert_eq!(
polygon.interiors(),
&[LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])]
);pub fn num_rings(&self) -> usize
pub fn num_rings(&self) -> usize
Count the total number of rings (interior and exterior) in the polygon
Examples
use geo_types::{coord, LineString, Polygon};
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);
assert_eq!(polygon.num_rings(), 1);
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![(0.1, 0.1), (0.9, 0.9), (0.9, 0.1)])],
);
assert_eq!(polygon.num_rings(), 2);pub fn num_interior_rings(&self) -> usize
pub fn num_interior_rings(&self) -> usize
Count the number of interior rings in the polygon
Examples
use geo_types::{coord, LineString, Polygon};
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);
assert_eq!(polygon.num_interior_rings(), 0);
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![(0.1, 0.1), (0.9, 0.9), (0.9, 0.1)])],
);
assert_eq!(polygon.num_interior_rings(), 1);Trait Implementations§
§impl<T> AbsDiffEq for Polygon<T>where
T: AbsDiffEq<Epsilon = T> + CoordNum,
impl<T> AbsDiffEq for Polygon<T>where
T: AbsDiffEq<Epsilon = T> + CoordNum,
§fn abs_diff_eq(
&self,
other: &Polygon<T>,
epsilon: <Polygon<T> as AbsDiffEq>::Epsilon
) -> bool
fn abs_diff_eq( &self, other: &Polygon<T>, epsilon: <Polygon<T> as AbsDiffEq>::Epsilon ) -> bool
Equality assertion with an absolute limit.
Examples
use geo_types::{Polygon, polygon};
let a: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7., y: 9.), (x: 0., y: 0.)];
let b: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7.01, y: 9.), (x: 0., y: 0.)];
approx::assert_abs_diff_eq!(a, b, epsilon=0.1);
approx::assert_abs_diff_ne!(a, b, epsilon=0.001);§fn default_epsilon() -> <Polygon<T> as AbsDiffEq>::Epsilon
fn default_epsilon() -> <Polygon<T> as AbsDiffEq>::Epsilon
§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq].§impl From<GeoPolygon> for Polygon
impl From<GeoPolygon> for Polygon
§fn from(field: GeoPolygon) -> Polygon
fn from(field: GeoPolygon) -> Polygon
§impl From<Polygon> for GeoPolygon
impl From<Polygon> for GeoPolygon
§fn from(field: Polygon) -> GeoPolygon
fn from(field: Polygon) -> GeoPolygon
§impl<T> PartialEq for Polygon<T>where
T: PartialEq + CoordNum,
impl<T> PartialEq for Polygon<T>where
T: PartialEq + CoordNum,
§impl<T> RelativeEq for Polygon<T>where
T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
impl<T> RelativeEq for Polygon<T>where
T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
§fn relative_eq(
&self,
other: &Polygon<T>,
epsilon: <Polygon<T> as AbsDiffEq>::Epsilon,
max_relative: <Polygon<T> as AbsDiffEq>::Epsilon
) -> bool
fn relative_eq( &self, other: &Polygon<T>, epsilon: <Polygon<T> as AbsDiffEq>::Epsilon, max_relative: <Polygon<T> as AbsDiffEq>::Epsilon ) -> bool
Equality assertion within a relative limit.
Examples
use geo_types::{Polygon, polygon};
let a: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7., y: 9.), (x: 0., y: 0.)];
let b: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7.01, y: 9.), (x: 0., y: 0.)];
approx::assert_relative_eq!(a, b, max_relative=0.1);
approx::assert_relative_ne!(a, b, max_relative=0.001);§fn default_max_relative() -> <Polygon<T> as AbsDiffEq>::Epsilon
fn default_max_relative() -> <Polygon<T> as AbsDiffEq>::Epsilon
§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
RelativeEq::relative_eq].§impl<T> TryFrom<Geometry<T>> for Polygon<T>where
T: CoordNum,
impl<T> TryFrom<Geometry<T>> for Polygon<T>where
T: CoordNum,
Convert a Geometry enum into its inner type.
Fails if the enum case does not match the type you are trying to convert it to.
impl<T> Eq for Polygon<T>where
T: Eq + CoordNum,
impl<T> StructuralEq for Polygon<T>where
T: CoordNum,
impl<T> StructuralPartialEq for Polygon<T>where
T: CoordNum,
Auto Trait Implementations§
impl<T> RefUnwindSafe for Polygon<T>where
T: RefUnwindSafe,
impl<T> Send for Polygon<T>where
T: Send,
impl<T> Sync for Polygon<T>where
T: Sync,
impl<T> Unpin for Polygon<T>where
T: Unpin,
impl<T> UnwindSafe for Polygon<T>where
T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> CallHasher for T
impl<T> CallHasher for T
source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key and return true if they are equal.§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key and return true if they are equal.§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T in a tonic::Request